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Strength of Tubular Samples and Tubular Cracked Junction
 Under Combined Loads
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The strength of tubular sample loaded by only one load or simultaneously with several loads is analyzed.
Critical stresses and critical loading parameters were introduced and discussed in the case of nonlinear
power law behavior. On the basis of principle of critical energy eqs. for superposition of loading effects have
been obtained. The influence of deterioration due the cracks has been introduced. The obtained theoretical
results were applied to tubular branch junctions and verified against data from literature.
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Pressure equipment and pipes, as well as tubular
nozzles, often are simultaneous loaded by internal pressure,
axial force, bending moment and torsional moment.
Tubular nozzles of pressure equipment may be:
perpendicular, inclined, oblique or tangential to the shell
surface. In the junction area between nozzle and shell the
stresses often exceed the yield stress. At stresses below
the yield stress the superposition of stresses due to different
loads may be done by algebraic summation. If the stress
exceed the yield stress one can not use the algebraic
summation. In this case the principle of critical energy
(PCE) must be used [1; 2]. In correlation with this principle
one uses critical values of forces, bending moments,
stresses etc.

In general, the critical stress, as well as the critical
parameter (pressure, axial force, bending moment etc.) is
that value of stress or of parameter that determines the
taking out of use or the destruction of a sample or a
mechanical structure. The value of critical stress or
parameter can be chosen; for example the value which
determines the yielding of material (corresponding to yield
stress) or the value which determines the failure
(corresponding to ultimate stress). The critical stress or
critical parameter is marked by subscript cr. For example
σcr  is the critical stress, Fcr is the critical axial force etc.

Until recently, strength calculation of structures static
loaded refers to materials with linear - elastic behavior.
Components and structures are usually calculated and
constructed according to stress principles: the equivalent
stress must be less or equal to an allowable value. But
many mechanical structures undergo defects or cracks,
as well as welding residual stresses. The problem is how
to calculate the mechanical structures taking into account:
- the influence of cracks and residual stresses; - the
nonlinear behaviour when stress is higher the yield stress.

A first way consists in resort to the principle of critical
energy [1; 2] which introduces the concept of specific
energy participation (the energy of a unit volume, J / m3 or
of a unit mass J/kg).

In the case of fatigue loading it was found experimentally
that when specimens without cracks (fig. 1) are under
load, fatigue strength begins to decrease after a number of
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cycles  N > Nf , while at specimens with cracks, fatigue
strength begins to decrease at N > N*f , where N* f  < Nf .

One can see that when N ≤  N*f  , the critical crack
length acr is constant, while when  N f  > N*f. , the crack will
increase continuously with an increasing number of load
cycles [3]. In the case of the materials under study (fig. 1),
the fatigue strength begins to decrease when the number
of cycles exceeds Nf = 1000  in specimens without cracks
and down to N*f = 100...300 cycles in specimens with
cracks. When N < Nf and at N < N*f , rupture is essentially
quasi-static.

Fig. 1. Fatigue curve for test specimens without cracks (1) and with
cracks (2) from aluminum allois [3]: Δ20-1 (a) and AlMg6 (b). Curve

3 refers to the crack half-critical length ccr

Critical stresses and critical loads
We consider the nonlinear, power law, behavior of the

material, under normal stress, σ, and shear stress,  τ, given
by the eqs.,

(1)

where ε  is the strain; γ  is the shear strain; Mσ, Mτ, k  and k1
are material constants.
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In recent works [4-6] on the basis of the principle of
critical energy there have been proposed the following
relations for critical stresses of tubular specimens with
cracks:

(2)

where the total deterioration D(aσ; c) depends on the crack
depth a ≡ aσ and the crack length 2c in the direction
perpendicular to the direction of the normal stress σ, while
deterioration D(aτ; c) depends on the depth of the crack  a
≡ aτ  and the crack length  2c  in the direction of shear
stress τ.

The relationships proposed in the literature [7-9] for yield
loading in tubular cylindrical specimens with cracks,
generally can be written as in eq. (2), namely

(3)
where YL  is the limit load of the cracked tubular specimen;
Yy  is the limit load of the crackless tubular specimen and
α = α1 = 0.

Based on this relationship, yield loads in tubular
specimens with cracks (FL; Mb,L; pL) were written in table 1
as a product of the yield load of the specimen without
cracks  (Fy; Mb,y; py)  and  a  bracket  comprising  damage

D(a; c). The last column lists the constant from damage
expressions resulting from papers [7÷9].

To see the effect of crack location, for the external
cracks, one uses the outer radius, R2, instead of mean
radius, Rm, when calculate the limit loadings, Fy, My and py.
For thin walled cylinders the results are approximately the
same; the effect of crack location is not significant for
shorter cracks (smaller values of θ / π ) [7].

On the basis of Morozov’s criterion of rupture for cracked
sample [10;11] at  σ ≤ σy one may write,

(4)

where D(c) = c / ccr  with  2c  the length of the crack and
2ccr  its critical value. In this case α = 1.

Similarly, on the basis of Andreikiv criterion [12], the
following failure criterion was written,

(5)

where εcr(c)  and εcr  are the effective and the critical
strain, while  m  is an exponent determined experimentally.

The empirical relations (4) and (5) are similar to
theoretical relation (2).

Structure strength calculation based on allowable
stresses

a. Classical strength calculation methods currently used
in official norms are deterministic methods and are based
on the condition,

(6)

Table 1
EQS. FOR YIELD LOADS IN

TUBULAR SPECIMENS WITH
CRACKS [7÷9] WRITTEN AS

IN EQ (3)
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where σeq is the equivalent stress, calculated by using a
strength theory (Tresca or von Mises theory). The allowable
stress in this case σal = σcr / cσ, where cσ > 1 is the safety
coefficient.

On principle, this method of strength calculation can be
applied to structures with cracks, too. The strength
requirement for a structure with cracks may be written as,

(7)

where σal (a;c) is the allowable stress of the cracked
specimen,

where σcr(a;c) results from the first eq. (2).

b. The calculation method based on the principle of
critical energy shows that the loading state must meet the
condition [6],

    (8)
where the total participation versus the allowable state
has the expression,

(9)

where σal = σcr / cσ  and τal = τcr / cτ are the allowable
stresses of uncracked specimen, while cσ > 1; cτ > 1 are
the safety coefficients with respect to the normal and shear
stress, respectively.

The allowable participation, Pal, is given by the eq. [6],

(10)

where D*T(t)  is the total damage with respect to the
allowable state and P*res is the specific energy participation
corresponding to the residual stress, with respect to the
allowable state.

Strength of tubular sample
In practice, piping systems as well as pressure

equipment with nozzles, are always subjected to combined
pressure and system loadings (bending moment, torsional
moment, forces…), thus the studies need to be carried out
of combined loading; it needs often to consider the
superposition of the deteriorations due to cracks.

Un-cracked tubular structures. General case
Consider a certain structure whose material behaves

according to relations (1). Under a group of loads such as
Fi(i=1; 2; 3 ... n), the total participation of specific energies
introduced into the structure material is written as [1],

  (11)

where Fcr,i  is the critical value of the generalized load Fi,
while  δF = 1 if Fi  acts in the direction of the process and δF
= -1, if it opposes the evolution of the process.

The critical state is reached when,

       (12)

where the critical participation, a dimensionless variable,
is given by the eq.,

  (13)

For crackless structures and no residual stresses Pcr(t)
= Pcr(0) such as, in this case, the group of static loads
becomes critical if,

  (14)

If a tubular specimen is under loads p, F and Mb (fig. 2)
eq. (14) becomes,

   (15)

where  δM = 1  in the section where Mb causes elongation
and δM =- 1 in the section where Mb  produces compression,
δF = 1 if F produces elongation and δF = -1 if F produces
compression.

Fig. 2.Tubular specimen loaded with internal pressure, p, axial
force, F, and bending moment Mb

In interpreting the experimental data, in general, one
can see that Pcr(0) ≠ 1 is a random value. Consequently,
the critical group is not a single value but a stochastic
distribution between Pcr, min(0)  and Pcr, max(0), depending
on the probability of structure material failure. These justify
the scatter of experimental data. Several test points may
be outside the upper (Pcr,max(0)) and lower (Pcr,min(0))
bounds. This may be caused by inaccuracy of material
property and experimental measurement. Therefore, one
can conclude that the proposed criterion (15) for critical
group of loads is an effective criterion for the fracture of
defect – free tubular sample. It can be used in the
engineering design and integrity assessment of tubular
sample.

In the case of simultaneous loading with internal
pressure and bending moment eq. (15) becomes,

(16)

For linear-elastic loading (σmax ≤ σy) α = 1 / k = 1. If one
adds to the above Pcr(0)=1, corresponding to the use of
deterministic values of the mechanical characteristics,
then relationship (16) becomes,

(17)

This relationship was obtained experimentally [13] with
tube specimens made from carbon steel (St 20) and
austenitic steel (12X18H10T).

Equation (17) has been proposed for calculating the
resistance of pipes featuring β = R2 / R1 ≤ 3 , simultaneously
loaded with internal pressure p  and bending moment Mb
[13]. For critical parameters the following relations have
been proposed [14]

(18)

which is the yield pressure and the yield bending moment,
respectively. Stress σ0.2 = σy is the yield stress
corresponding to a residual strain of 0.2% while Ss is the
static moment of the section area.
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Strength of tubular branch junction
In many practical cases the tubular joints welds are

susceptible to crack formation because the nozzle - vessels
junction often experience mixed mode loading (fig. 3).
Consequently the strength is affected by the cracks.

Fig. 3. Tubular
junction: 1 – run pipe;

2 – branch pipe;
3 – weld;

a, b, c – cracks

The state of a cracked tubular joint subjected to internal
pressure, p, bending moment, Mb, torsion moment, Mt,
tension force, F, becomes critical if eq. (12) is fulfilled,
namely,

(19)

In the case of internal pressure and bending moment
loading, neglecting the residual stress influence, and
limiting the maximum stress to the value of yield stress
(when k = 1 and α = 1 / k = 1), eq. (19) becomes,

(20)

where Pcr(t) = Pcr(0) - DT(t).
Ignoring the deterioration will lead to overestimation the

resistance of the branch junction.
In the cases when the critical loads are deterministic

values (Pcr(0)=1),
(21)

One uses eqs. (20) and (21) to evaluate the results obtain
in the papers [15÷18].

In the paper [15] a branch junction were used (fig. 4),
which had a branch/run pipe mean diameter ratio rm/ Rm =

0.5, a thickness ratio t / T = 1.0  and diameter/thickness
ratio 2Rm / T = 20.

Through-wall cracks were considered (T = t) with an
angular extension 2β [15; 16]. The critical loads were
assumed the limit loads, corresponding to yield stress.

For uncracked model (DT(t) = 0) the interaction diagram
is a circle with the radius  (fig. 5).

If 2β > 0 then DT(t) > 0 and eq. (20) describes circles
with the radius  (fig. 5). For 2β = 49o results a
circle with the radius . For  2β = 95o results a
circle with the radius , while for  2β = 140o

results a circle with the radius .

Similar results were obtained for 2Rm / T = 10 and 30
and with rm / Rm = 0.95 [17].

The paper [18] describes the effect of cracks on the
limit loads of a branch junction under combined pressure
and bending to the branch pipe and, separate, to the run
pipe. Two branch components were considered, namely
(fig. 4):

- large bore with Rm = 244.5 mm; T = 31.8 mm; rm  =
154 mm; t = 15.9 mm.

- medium bore with Rm = 222.5 mm; T = 20 mm; rm  =
59.5 mm; t = 8 mm.

For un-cracked branch junction under combined
pressure and bending to the branch piping, the interaction
curve (p / pcr  versus Mb / Mb,cr) is circular, given by eq. (20)
with DT(t) = 0,

(22)

For through-wall crack, a = T, with the crack located on
the crotch in the lower weld toe (fig. 4), with relative length
α / π ≤ 0.5  the circular interaction results as in  figure  6;
it is described by eqs. (20) and (21) where DT(t) = D(a, α)
is the deterioration due to crack. The circles are of radius

, in both cases: large bore (fig. 6, a) and
medium bore (fig. 6, b). One can see that the points
obtained in [18] fits with eq. (20) for  0.8 and 0.9
in the case of large bore branch pipe and for 
and 0.92  in the case of medium bore branch pipe. Because

 for medium bore, for the same α / π, is higher than
for large bore, one may conclude: the medium bore
junction has a higher strength then the large bore junction.

Fig. 4. Branch junction geometry: 1 – run pipe; 2 – branch pipe;
3 – weld

Fig. 5. Interaction diagram for combined pressure and bending
moment loading of branch junction for 2Rm = 20; rm / Rm = 0.5;
t = T (through wall crack): o uncracked;  2β = 49o;  2β = 95o;

 Δ 2β = 140o;  [15; 16]
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Conclusions
One analysis the critical stresses and critical loadings

for specimens without and with cracks. On this basis
strength calculation methods are proposed:

- the classical method based on the equivalent stress;
- the method based on the principle of critical energy.
The concept of specific energy introduced by principle

of critical energy is used for strength evaluation of: - tubular
sample loaded by internal pressure, axial force and bending
moment; - tubular branch junction loaded by internal
pressure, bending moment, axial force and torsional
moment.

The analytical eqs. obtained on the basis of principle of
critical energy were verified against data from literature
for cracked branch junctions. The theoretical results are in
good agreement with the data reported in literature.
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Fig. 6. Through-wall cracked branches (a = T) located in
the lower weld toe (fig. 4) under pressure and in-plane

bending moment to the branch pipe: a – large bore
branch; b – medium bore branch. The curves with eq. (20)

and the points after [18]: α / π = 0.25 (o) and
α / π =  0.25 ( ).




